Доскат Гальтона, может быть? Обычная наклонная плоскость с расположенными поочередно рядами преград, которые скатывающийся шарик может обходить как слева, так и справа. Полученное распределение шариков весьма близко распределению Максвелла. Читай http://physics.nad.ru/Physics/Cyrillic/max_txt.htm : Для лучшего уяснения статистического характера задачи о распределении скоростей молекул может служить прибор, называемый доской Гальтона. Это - доска, с передней стороны прикрытая стеклом, в которую в шахматном порядке достаточно часто вбиты гвозди. Вверху над гвоздями в средней части доски помещена воронка, в которую можно сыпать песок, зёрна пшена, или другие частицы. Если бросить в воронку одну частицу, то при падении вниз она испытает множество столкновений с гвоздями и в конце концов упадёт на стол на определённом расстоянии от центра доски (см. анимацию). На каком расстоянии от центра доски упадёт частица предсказать невозможно из-за множества случайных факторов, влияющих на её движение. Можно говорить лишь о вероятности отклонения частицы на то или иное расстояние. Естественно ожидать, что падение частицы в центральной части стола более вероятно, чем по краям. И действительно, если через воронку сыпать частицы непрерывно, то оказывается что в центральной части стола, находящейся под отверстием воронки, скапливается наибольшее число частиц, а по краям доски их наоборот очень мало. При очень большом количестве частиц прошедших через воронку, вырисовывается вполне определённая статистическая закономерность их распределения
Ответить
|